Translation Model Adaptation for Statistical Machine Translation with Monolingual Topic Information
نویسندگان
چکیده
To adapt a translation model trained from the data in one domain to another, previous works paid more attention to the studies of parallel corpus while ignoring the in-domain monolingual corpora which can be obtained more easily. In this paper, we propose a novel approach for translation model adaptation by utilizing in-domain monolingual topic information instead of the in-domain bilingual corpora, which incorporates the topic information into translation probability estimation. Our method establishes the relationship between the out-of-domain bilingual corpus and the in-domain monolingual corpora via topic mapping and phrase-topic distribution probability estimation from in-domain monolingual corpora. Experimental result on the NIST Chinese-English translation task shows that our approach significantly outperforms the baseline system.
منابع مشابه
Rapid Unsupervised Topic Adaptation – a Latent Semantic Approach
In open-domain language exploitation applications, a wide variety of topics with swift topic shifts has to be captured. Consequently, it is crucial to rapidly adapt all language components of a spoken language system. This thesis addresses unsupervised topic adaptation in both monolingual and crosslingual settings. For automatic speech recognition we rapidly adapt a language model on a source l...
متن کاملDomain Adaptation of Statistical Machine Translation Models with Monolingual Data for Cross Lingual Information Retrieval
Statistical Machine Translation (SMT) is often used as a black-box in CLIR tasks. We propose an adaptation method for an SMT model relying on the monolingual statistics that can be extracted from the document collection (both source and target if available). We evaluate our approach on CLEF Domain Specific task (German-English and English-German) and show that very simple document collection st...
متن کاملA new model for persian multi-part words edition based on statistical machine translation
Multi-part words in English language are hyphenated and hyphen is used to separate different parts. Persian language consists of multi-part words as well. Based on Persian morphology, half-space character is needed to separate parts of multi-part words where in many cases people incorrectly use space character instead of half-space character. This common incorrectly use of space leads to some s...
متن کاملDomain Adaptation for Statistical Machine Translation with Domain Dictionary and Monolingual Corpora
tra Statistical machine translation systems are usually trained on large amounts of bilingual text and monolingual text. In this paper, we propose a method to perform domain adaptation for statistical machine translation, where in-domain bilingual corpora do not exist. This method first uses out-of-domain corpora to train a baseline system and then uses in-domain translation dictionaries and in...
متن کاملEfficient Extraction of Pseudo-Parallel Sentences from Raw Monolingual Data Using Word Embeddings
We propose a new method for extracting pseudo-parallel sentences from a pair of large monolingual corpora, without relying on any document-level information. Our method first exploits word embeddings in order to efficiently evaluate trillions of candidate sentence pairs and then a classifier to find the most reliable ones. We report significant improvements in domain adaptation for statistical ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012